

WELCOME

Chapter 8 Day 1: Trigonometric Ratios

Warm-Up

1) Factor:

2) Find the missing sides of the special right triangles:

Chapter 8 Day 1

Right Triangle Trig

Chap 8 Day 1 Learning Target

Find special <u>ratios</u> in <u>Right Triangles</u>.

 Determine <u>Trigonometric</u> <u>ratios</u> and <u>solve</u> for missing <u>sides</u>.

Special Right Triangles

$$45^{o} - 45^{o} - 90^{o} \Delta$$

 $Hypotenuse = \sqrt{2} \cdot leg$

Longer Leg = $\sqrt{3}$ • Short leg Hypotenuse = 2 • Short leg

Trigonometric Ratios

A ratio of the lengths of two sides of a <u>right Δ </u> it is directly related to the acute \angle s in the Δ

The three basic Trig. Ratios...

Sine (sin)

Cosine

(cos)

Tangent

(tan)

Trigonometric Ratios

Let $\triangle ABC$ be a right \triangle . The sine, cosine and tangent of the acute $\angle A$ are defined as follows.

$$\sin A = \frac{side\ opposite \angle A}{hypotenuse} = \frac{o}{h}$$

$$\cos A = \frac{side\ adjacent\ \angle A}{hypotenuse} = \frac{a}{h}$$

$$\tan A = \frac{side\ opposite \angle A}{side\ adjacent\ \angle A} = \frac{o}{a}$$

Find the sine, the cosine, and the tangent of the indicated angle.

a. $\angle S$

Helpful Way to Memorize

Find the sine, the cosine, and the tangent of 30°.

Finding a Side given 1 Side & 1 \(\alpha \)

$$tan(45^o) = \frac{x}{10}$$

Real World Problems

FORESTRY You are measuring the height of a Sitka spruce tree in Alaska. You stand 45 feet from the base of the tree. You measure the angle of elevation from a point on the ground to the top of the tree to be 59°. To estimate the height of the tree, you can write a trigonometric ratio that involves the height h and the known length of 45 feet.

Metro Rail Station in Los Angeles rises 76 feet at a 30° angle. To find the distance d a person travels on the escalator stairs, you can write a trigonometric ratio that involves the hypotenuse and the known leg length of

76 feet.

